AutoRel is a tool designed to identify biologically relevant genes from RNA-Seq differential expression analysis, going beyond simple statistical significance.
-
Install as an R Package (Directly from GitHub):
# In R: devtools::install_github("jochotecoa/AutoRel")
-
Run via CLI:
Rscript run_AutoRel.R --counts counts.csv --results res.csv --metadata meta.csv --contrast Group --control Control --report
-
Verify installation (Optional):
Rscript test_installation.R
You can use AutoRel directly inside your R scripts:
library(AutoRel)
results <- run_prioritization(
norm_counts = my_counts,
res = my_deseq2_results,
coldata = my_metadata,
contrast_group = "Group",
control_level = "Control",
model_path = system.file("extdata", "autorrel.rds", package="AutoRel"),
output_path = "results/"
)This tool uses GitHub Releases to manage model versions. This ensures that the code version you use is always paired with the correct trained model.
To update the model hosted on GitHub:
- Tag the commit:
git tag v0.1.0 - Push the tag:
git push origin v0.1.0 - Create a Release on GitHub and upload the
autorrel.rdsfile as a binary asset.
The install_AutoRel.R script will then automatically pull the model from that release.
Docker allows you to run AutoRel without worrying about R dependencies.
-
Build the image:
docker build -t autorell . -
Run the analysis: (Mount your local data folder to
/app/datain the container)docker run -v /path/to/your/data:/app/data autorell --counts data/counts.csv --results data/res.csv --metadata data/meta.csv --contrast Group --control Control
| Argument | Description |
|---|---|
-c, --counts |
Path to normalized counts CSV (gene names in 1st column) |
-r, --results |
Path to DESeq2 results CSV (gene names in 1st column) |
-m, --metadata |
Path to coldata/metadata CSV (sample names in 1st column) |
-g, --contrast |
Column name in metadata used for grouping |
-l, --control |
(Optional) Name of the control level |
-o, --output |
(Optional) Output directory (default: output/autorrel_results) |
--report |
(Optional) Generate an automated HTML analysis report |
When using the --report flag, AutoRel generates a professional HTML report containing:
- Summary findings: Total genes prioritized as relevant.
- Interactive Tables: Filterable list of relevant genes.
- Relevance vs. Significance Plot: A volcano-style visualization highlighting prioritized genes.
- Top Genes Heatmap: Scaled expression profiles of the top 20 prioritized genes.
run_AutoRel.R: Main Command Line Interface.install_AutoRel.R: Script to install dependencies and download the model.scripts/:autorrel/: Core pipeline and model logic.analysis/: Pipeline and model comparison scripts.case_studies/: Specific applications (APAP, Colorectal Cancer, etc.).
models/: Storage for the trainedautorrel.rdsmodel.data/: Input datasets and example files.output/: Results, figures, and model exports.
- R (>= 4.0)
- DESeq2
- Tidyverse, Caret, Magrittr, Optparse
Developed by Juan Ochoteco Asensio