Privacy-focused RAG system that runs entirely offline:
- using Ollama LLMs.
- Implemented LangGraph to orchestrate an intelligent workflow that switches between
- Vector Search (PDF/TXT) and SQL generation based on query intent.
- Python (FastAPI,LangChain, LangGraph, DSPy)
- JavaScript, TailwindCSS, REACT.JS
- Ollama Local Models
- PostMan
/api/query/api/document/api/upload/api//tables/api/health
- Download and install Ollama Locally from here
- Pull The Model
llama3.1:8b
ollama pull llama3.1:8b- Rename
.env.exampleto.env.
cp .env.example .env- Setup Your Variables.
- You can pull any model you want, but you will have to change
LLM_MODEL=Your Model Name - You can direct
DATABASE_PATHto your local database by using the absolute path.
- Make a virtual environment and activate it.
python -m venv .venv
./.venv/Scripts/activate- Install requirements inside the venv.
pip install -r requirements.txt- Download and install Node.Js from here
- Make sure you installed it by using this command.
npm --versioncd frontent
npm iOpen Two Terminals
- Run the FASTAPI Services.
cd backend
uvicorn main:app --reload --host 0.0.0.0 --port 5000- Run the REACT Frontend
cd frontend
npm run- Access Application from here http://localhost:5173/


